
Quiz Section 8
5/17/2018

Recursion

• Doug mentioned that decision trees can be constructed
using a recursive algorithm

•What does that mean?

An example

How might you sort a large number of items?

I have 1000 index cards with numbers on them, and all
of you, what’s the easiest way to sort them?

An example

How might you sort a large number of items?

I have 1000 index cards with numbers on them, and all
of you, what’s the easiest way to sort them?

Ok, I have an algorithm for you:

The merge sort algorithm

1. Split your list into two halves

2. Sort the first half

3. Sort the second half

4. Merge the two sorted halves,
maintaining a sorted order

The merge sort algorithm

1. Split your list into two halves

2. Sort the first half

3. Sort the second half

4. Merge the two sorted halves,
maintaining a sorted order

But now there are 500
cards in each pile…
If I knew how to sort
quickly, I wouldn’t be
here in the first place?!?

The merge sort algorithm

1. Split your list into two halves

2. Sort the first half

3. Sort the second half

4. Merge the two sorted halves,
maintaining a sorted order

But now there are 500
cards in each pile…
If I knew how to sort
quickly, I wouldn’t be
here in the first place?!?

Here’s a crazy idea:
let’s use merge sort
to do this

Let’s take a step back …

Factorial

This function calculated n!
def factorial(n):

f = 1
for i in range(1,n+1):

f *= i
return f

>>> print factorial(5)
120
>>> print factorial(12)
479001600

§ A simple function that calculates n!

Factorial
§ But … there is an alternative recursive definition:

§ So … can we write a function that calculates n! using
this approach?

§ Well …
We can! It works! And it is called a recursive function!

í
1

î(n-1)! ´n
if n =0
if n >0

n!= ì

This function calculated n!
def factorial(n):

if n==0:
return 1

else:
return n * factorial(n-1)

Why is it working?
This function calculated n!
def factorial(n):

if n==0:
return 1

else:
return n * factorial(n-1)

factorial(5)
120

5 * factorial(4)
24

4 * factorial(3)
6

3 * factorial(2)
2

2 * factorial(1)
1

1 * factorial(0)
1

1

Recursion and recursive functions
§ A function that calls itself, is said to be a recursive

function (and more generally, an algorithm that is defined in
terms of itself is said to use recursion or be recursive)

(A call to the function “recurs” within the function; hence the
term “recursion”)

§ In may real-life problems, recursion provides an
intuitive and natural way of thinking about a solution
and can often lead to very elegant algorithms.

mmm…
§ If a recursive function calls itself in order to solve the

problem, isn’t it circular?
(in other words, why doesn’t this result in an infinite loop?)

§ Factorial, for example, is not circular because we
eventually get to 0!, whose definition does not rely on
the definition of another factorial and is simply 1.

§ This is called a base case for the recursion.

§ When the base case is encountered, we get a closed
expression that can be directly computed.

Defining a recursion
§ Every recursive algorithm must have two key features:

1. There are one or more base cases for which no recursion
is applied.

2. All recursion chains eventually end up at one of the base
cases.

The simplest way for these two conditions
to occur is for each recursion to act on a
smaller version of the original problem.
A very small version of the original problem
that can be solved without recursion then
becomes the base case.

A bad computer scientist joke

What's wrong with this recursive "algorithm"?

Finally,
let’s get back to our merge sort

The merge sort algorithm
1. Split your list into two halves
2. Sort the first half (using

merge sort)
3. Sort the second half (using

merge sort)
4. Merge the two sorted halves,

maintaining a sorted order

1
2
3
4

4
he

lp
er

fu
nc

tio
n

Merge two sorted lists
def merge(list1, list2):

merged_list = []
i1 = 0
i2 = 0

Merge
while i1 < len(list1) and i2 < len(list2):

if list1[i1] <= list2[i2]:
merged_list.append(list1[ii])
i1 += 1

else:
merged_list.append(list2[i2])
i2 += 1

One list is done, move what's left
while i1 < len(list1):

merged_list.append(list1[i1])
i1 += 1

while i2 < len(list2):
merged_list.append(list2[i2])
i2 += 1

return merged_list

merge sort recursive
def sort_r(list):

if len(list) > 1: # Still need to sort
half_point = len(list)/2
first_half = list[:half_point]
second_half = list[half_point:]

first_half_sorted = sort_r(first_half)
second_half_sorted = sort_r(second_half)

sorted_list = merge \
(first_half_sorted, second_half_sorted)

return sorted_list
else:

return list

The merge sort algorithm
1. Split your list into twohalves
2. Sort the first half (using

merge sort)
3. Sort the second half (using

merge sort)
4. Merge the two sorted halves,

maintaining a sorted order

List of size 1.
Base case

Here's a puzzle: how to calculate the sum of a
list (of any length) without for and while loops?

Hint: One way to show this mathematically
sum = (0 + (5 + (3 + (4 + (8)))))

def sumList(list1):
#List sum calculation here

my_list = [0,5,3,4,8]

Recursion vs. Iteration
§ There are usually similarities between an iterative

solutions (e.g., looping) and a recursive solution.
§ In fact, anything that can be done with a loop can be done

with a simple recursive function!
§ In many cases, a recursive solution can be easily converted

into an iterative solution using a loop (but not always).

§ Recursion can be very costly!
§ Calling a function entails overhead
§ Overhead can be high when function calls are numerous

(stack overflow)

Recursion - the take home message
§ Recursion is a great tool to have in your problem-

solving toolbox.

§ In many cases, recursion provides a natural and
elegant solution to complex problems.

§ If the recursive version and the loop version are
similar, prefer the loop version to avoid overhead.

§ Yet, even in these cases, recursion offers a creative
way to think about how a problem could be solved.

